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natural manner to the relativistic and quantum theory generalizations /8/. 1In addition, the
canonical Hamiltonian formulation of hydrodynamic problems is found to be convenient in the
case of numerical calculations /9/.

The author thanks Yu.I. Neimark for his interest.
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SLOW MOTION CF A PARTICLE IN A WEAKLY ANISOTROPIC VISCOUS FLUID

V.N. POKROVSKII and A.A. TSKHAI

The problem of the steady flow past a rigid sphere of a linear, homogeneous
weakly anisotropicviscous incompressible fluid is studied in the Stokes
approximation. The solution is sought using the perturbation method and
has the form of an expansion in particular solutions of the Laplace equation
in Cartesian coordinates. Expressions for the velocity and pressure

fields in the fluid are obtained, as well as for the force acting on the
particle.

When studying certain systems such as liquid crystals, we encounter the problem of
determining the coefficients of resistance when a particle is in translational and rotational
motion through an anisotrepic fluid. The simplest case of such a fluid is a linear, homogeneous,
viscous anisotropic liquid defines by the equation (see e.g. /1/)

5ij=_P6ij+r|ithvq"h (1)
(Musng = Nsing = Nijgn = Mgiz» Vq = 0/9%g)
where o;; is the stress tensor, p is the pressure, vy, is the velocity and w;;q is the tensor
of viscosity coefficients with the idicated symmetry properties.

We can separate from the tensor of viscosity coefficients wijnq a part corresponding to
an isotropic fluid with viscosity coefficient 1q

Miing =" Oindig + 8ig8in) +Lijng @
Henceforth we shall regard the anisotropic term §;,, as small, and this will make it
possible to express the particle resistance coefficients in the form of an expansion in terms
of the small parameter ;. We will restrict ourselves to determining the first-order

correction to the resistance coefficient of a spherical particle in translational motion.
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Note that the attempt made in /2/ to solve this problem for an arbitrary value of
anisotropy has proved to be erroneous (see the appendix).

Let us consider the problem of a spherical particle of radius R moving slowly through an
anisotropic liquid at rest, defined by the equation (1), {2). We will obtain the velocity and
pressure distribution in the form of a solution to the equations of motion and continuity with
the boundary conditions

Vo, =0, Vo, =0 (3)

We write the expressions for the velocity and pressure up to first-order terms in the

small parameter &5, in the form

vy = v+ oD, pe=p® g p® {4)
The zerc solution corresponds to the Stokes solution and has the form

3 /R I fR\3
o0 = 5 (T ) [u; 4 n; ()] — T(T} [, — 3n, (upn )]+ 2,
. 3
P = A )

We obtain the following system of equations with boundary conditions for the first-order
corrections:

Vp =V, V0, + 6 VeV, Vil =0 (5)
r=R, vf?=0; r— oo, v =0 (6)
To solve the boundary value problem (5), (6) we follow /3/ and introduce the concept of

a multipole L; . x of order 6 as a particular solution of the Laplace equation in a Cartesian
coordinate system (@ 1is the number of indices ...k

—1° 1
ik = BB ke Vi (T) » VeV Ly =0

The expressions for the multipoles of order 86 have the form

L

1 % @ Oy _
L=y b= Ly=—% — 3% )
L ot BapTyug

k=T T 5
2,17, OugtTelikimn | Oapdys)inim

Ligim = g - 7r? + 35r®

22, % Bup®ymeTinimn | apbypeikimn
Liyimn = 7T - = -+ Bar

28T TPt (858%yToTeTvl ik imnt
Likimnt = e - 11 +

(CapdypZeto)ikmnt (Bap8ya0ew)ikimnt
99r® - 69377

Here and henceforth expressions of the form (Bggzoalinim will denote the sum of terms of
the same type, in which the Greek indices within the brackets take, consecutively, all values
of the Latin indices appearing outside the brackets. The repeated terms are taken into account
only once.

The following rules of operation over the multipoles hold:

[
Vi =~ @0+ 1) L; g0 ol sg="55TT Liok

V.V, Ly y =i (n—20—1) [

2(2041) . _
cha{“t’"Li...rr‘*‘ I m—m=1n " Li...ﬂ}—

n(n—2041)r" %L,
The following recurrence relation for the multipoles of order 6«5 (the number of
indices y...8 1is equal to I - 2): also holds:
2 1 L
ZpLi k=" b~ T =T Ceply..om)ik + T Cmaly.. sedios ®
Applying the operation Vj to the first eguation of (5) and using the second equation
of (5), we obtain Poisson's eguation for the pressure correction
VaV’pm = !:',thVthVlvg") (9)
3 3
2P = (4 + B Ly +C L+ u, A =7 Ru, Co=—Ru By =— 7Ry
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Considering Egs. (5) and (9) together, using the properties of the multipoles shown above
and taking into account the boundary conditions (6), we obtain the first velocity and pressure
corrections

PY =5y R {Aletmn + B (28 Ly + SinLoymn) +

12 9
COlytm— 140 Bl + Brdruli) + 35 Smdinly _'Wbubmnl'k}

105 45 189 1 5
A—Tﬁﬂr'——r‘ 15~ R, B=-—2—r'-—-""é-'R’,
5
Cm—grtgh
R
y A
vl = W = B Bty {DL(klmnh + E (80,0 Lypry + 281 L + (10

xnlttmn) + € (6lkl‘lmnh + dnlyimn) —
1
Lrh"’kzbmn 6 BpmdinLen +6k16nh['lm) - 420 8B pnLen
84{) tm Inl‘!m += 42 Glménh[' Ty 84 62156715&1‘

1
21 Sedmale 12 Semdunln — 53 5kn‘5an:m}
15 45 99 9 21
D=—gmrt+ggrR—g R E=—gr—rp &,

63 147

6=—1r+1E &

The force acting on the particle is found from the formula

Fi= SS Sy dy
§

where nxy is the unit normal to the particle surface S,

The stress tensor and the velocity and pressure field strength (4) are given, up to first-
order terms in &y, in the form

=i+ Fi=FP+Fp
ARccording to the Stokes we have, in the zeroth approximation,
F&o) = Gnqﬂui (11)

The first correction to the force actihg on the particle from the liquid, caused by the

anisotropy of the medium, is found from the formula

PO = (§o@n,),_p = SS [— P8, + 1 (TP + Vo) 8,5 Vo] gy d
8

Using the expressions for the velocity and pressure distribution and taking into account
the fact that

4 4
SS z.2, ds = 5 nR‘bik. SSS ’i’k’l‘md‘ = Ts—-uﬂ" (6“345‘,6)”r m
B

SS @ 2L, T T, d8 = T— 7B (8,08.08ev ik s
8
we obtain the correction for the reaction force

3
F == g R (158,,8,,8,,, — 108, 8,8 . 4 28,80, + 84,,84,810) Etemlis (12)

It can be shown that the part of the reaction force depending on the rotatiocnal motion
of the sphere in an anisotropic liquid is equal to zero. Therefore, the total force of
reaction of the sphere is reduced to its force of reaction in its translational motion.

Appendix. On the erroneous results of /2/. 1In /2/ an attempt was made to solve problem
(1), (3) by inroducing new characteristic variables, namely the velocity field tensor V;’ and
pressure field vector P,. as follows:

= V;‘u‘, péij = 1]’“t}lmblml) Yy (A1)

where the translational velogity of the particle u, is an arbitrary vector. Substituting(A.l)
into (1), (3) we find that the characteristic guantities (Vy/, P/} must satisfy the following
system of equations and boundary conditions:

1
V's“=Tnijlmunvj (=8P + ViV o' +VlV"w)"O (A.2)
V.V, =0 r=a, Vij=6ij; r—eo, V) -0 (A.3)
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We find, however, that the expressions given in /2/ for the characteristic quantities

v 3 a . 3 (a 3 1 B L.
a!?“?“%ﬂiﬂ“?ﬁ?‘(ww~§¢¢ (B4
, 3 a Z
Bl=gm m=—
do not satisfy Egs.(A.2). Therefore the expressions given for the coefficients of resistance

of a spherical particle are incorrect,
The error in /2/ is caused by the fact that instead of Eqg.{A.2) the author used
VR =V, (A.5)
which were obtained as follows. In order for the pair (13, P/} to be a solution of {A.2), it

is sufficient for that pair to be a solution of the eguation V;{—8inPd + VmVis' + ViVp') =0, or
in expanded form, to

fm=t, = VP + VWV VTV =0 (A.6)
fmmm2, — BVgP, A VWV, VWV, =0

fmm=3, — 8,yVgP, 4 VoVgV,, + V,Vaby, =0

F=1, m=2, —0pViP, +V VY, VTV, =0

f=1, m=3, — 8,V P/ + VsV + VUiV =0

f=2, m=2, —O8,VgP, ViU,V 4 VY.V, =0 etes

In /2/ the first three equations of (A.6) were combined to obtain, naturally, (A.5), and
the remaining equations of (A.6) were neglected. The present discussion shows, however, that
the system (A.3), (A.5) is not equivalent to the system (A.2), {(A.3).

We note that in the special case of isotropic viscosity

s = M 0y0 50, + 8,58,

the relations (A.l) become v; = Vijug, p = P,/us, equations (A.2) reduce to Egs.{(A.5) and the
problem, as well as the method of solving it in /2/, become identical with the results in /4/.
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ON THE STABILITY OF A VAPOUR-LIQUID MEDIUM CONTAINING BUBBLES

V.SH. SHAGAPOV

A problem of the stability of a vapour-liquid medium containing bubbles is
investigated. It is shown that since the surface tension and phase
transitions act simultaneously, a range of values of the parameters of the
vapour—liquid and vapour-gas-~liquid media containing bubbles exists, for
which the equilibrium state is unstable. The effect of various parameters
of the two-phase medium, such as the volume content of the bubbles, the
mass content of the gas and the degree of dispersion of the medium, on

the increment characterizing the rate of development of the instability,
is analysed.

1. Fundamental equations. Let us consider the propagation of small perturbations
through a polydisperse mixture of liquid and bubbles of m —1 kinds, under the usual assump-
tions made for two-phase media. Moreover, we shall assume that the gaseous phase consists
of the vapour from the liquid phase, and some "inert" gas which takes no part in the process
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