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natural manner to the relativistic and quantum theory generalizations /8/. In addition, the 

canonical Hamiltonian formulation of hydrodynamic problems is found to be convenient in the 
case of numerical calculations /9/. 
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SLOW MOTION CF A PARTICLE IN A WEAKLY ANISOTROPIC VISCOUS FLUID* 

V.N. POKROVSKII and A.A. TSKHAI 

The problem of the steady flow past a rigid sphere of a linear, homogeneous 
weaklyanisotropicviscous incompressible fluid is studied in the Stokes 
approximation. The solution is sought using the perturbation method and 
has the form of an expansion in particular solutions of the Laplace equation 
in Cartesian coordinates. Expressions for the velocity and pressure 
fields in the fluid are obtained, as well as for the force acting on the 
particle. 

When studying certain systems such as liquid crystals, we encounter the problem of 
determining the coefficients of resistance when a particle is in translational and rotational 
motion through an anisotropic fluid. The simplest case of such a fluid is a linear, homogeneous, 
viscous anisotropic liquid defines by the equation (see e.g. /l/) 

"ij =- fiij + Ilijhq'q'h (') 

(%jm= ?j*hq = I)ijqh= tlhpij' 'p = 'la+,) 

where eij is the stress tensor, p is the pressure, vk is the velocity and qijap is the tensor 
of viscosity coefficients with the idicated symmetry properties. 

We can separate from the tensor of viscosity coefficients lijhq a part corresponding to 
an isotropic fluid with viscosity coefficient q 

'lijhq =(1 C6ihbjp + 'iq'jh) + Sij** (2) 

Henceforth we shall regard the anisotropic term &ijha as small, and this will make it 
possible to express the particle resistance coefficients in the form of an expansion in terms 
of the small parameter Eijh,,, We will restrict ourselves to determining the first-order 
correction to the resistance coefficient of a spherical particle in translational motion. 
*Pril~l.Matem.I4ekhan.,50,3,512-515,1986 
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Note that the attempt made in /2/ to solve this problem for an arbitrary value of 
anisotropy has proved to be erroneous (see the appendix). 

Let us consider the problem of a spherical particle of radius R moving slowly through an 
anisotropic liquid atrest, defined by the equation (l), (2). We will obtain the velocity and 
pressure distribution in the form of a solution to the equations of motion and continuity with 
the boundary conditions 

Vjdij = 0, ViUiZ 0 (31 

We write the expressions for the velocity and pressure up to first-order terms in the 
small parameter SiJhy in the form 

u. = Vi@ + U$'), I p sp(") + A(') ia 
The zero solution corresponds to the Stokes solution and has the form 

We obtain the following system of equations with boundary conditions for the first-order 
corrections: 

V$(') "'IV,V,Uh +th2,mVmVIUj@, v&n =0 (5) 

r=R, .!I) =I); r-+00, VP)=0 (6) 

To solve the boundary value problem (5), (6) we follow /3/ and introduce the concept of 
a multipole Li...k of order 6 as a particular solution of the Laplace equation in a Cartesian 
coordinate system ( e is the number of indices &...k) 

(- I? 
Li...k - (29- I)!! -- Vk. ..v$(+), v,vILi,,,k = 0 

0) 

The expressions for the multipoles of order 9g6 have the form 

L 
Xi”kxlx‘m 

tklm =----T--- 
(a@z~dik*mn + (liaf+W)iklm 

7r' 35rS 

LikImn = 

5iXkX15mxn (~&yzbzdiklmn 
+ 

~‘%&%%hklmn 
$1 - 9+ 63r' 

Li ktmnt a 
“ixkzlzm5nzt (b,~tyzbxe3v)ikl,,,nt 

r.1J - Ilr” -i- 

~F,~byfj3cZv)ikh,nt (‘a~‘yb%diklmnt 

QQr* - 693r' 

Here and henceforth expressions of the form (6=~Z~b)~kl~ will denote the sum of terms of 
the same type, in which the Greek indices within the brackets take, consecutively, all values 
of the Latin indices appearing outside the brackets. The repeated terms are taken into account 
only once. 

The following rules of operation over the multipoles hold: 

vqLi...k iEi I’ (28 f 1, Li...Ag* zqLi..,kq= ?“,:‘i Li...k 

V~V~rnLi...k =)I (n - 2e- l)r n 2 - Li,,,, 

v,v, 1 
2(2e+4) 

q'"Lr,..&. + p&+ 2) (n_ 28 _ 1) '"+sLl...ri I- - 

n(n-- ze+ l)r"-%,L*.. k 

The following recurrence relation for the multipoles of order 6g5 (the number of 

indices y... 6 is equal to 1-2): also holds: 

Applying the operation gh to the first equation of (5) and using the second equation 
of (51, we obtain Poisson's equation for the pressure correction 

v,v,p * bnvhvmvP) (9) 
a$“‘=(Ak fBkfl)tlk f C,L+ Y,, A, = $Puk, C,=-Ru,, Rk=-~Ruk 
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Considering Eqs.(5) and (9) together, using the properties of the multipoles shown above 
and taking into account the boundary conditions (61, we obtain the first velocity and pressure 

corrections 

The force acting on the particle is found from the formula 

where J&k is the unit normal to the particle surface S. 
The stress tensor and the velocity and pressure field strength (4) are given, up to first- 

order terms in Ejjkq, in the form 

s..=.$ f d?, 11 ‘I Pi = qp’ + qu 

According to the Stokes we have, in the zeroth approximation, 

F{')= 6nQ?ei (ii) 

The first correction to the force acting on the particle from the liquid, caused by the 
anisotropy of the medium, is found from the formula 

Using the expressions for the velocity and pressure distribution and taking into account 
the fact that 

ss 
4 

5i4 aa =7 d+aik, 
S 

we obtain the correction for the reaction force 

It can be shown that the part of the reaction force depending on the rotational motion 
of the sphere in an anisotropic liquid is equal to zero. Therefore, the total force of 
reaction of the sphere is reduced to its force of reaction in its translational motion. 

Appendix. On the erroneous results of /2/. In /2/ an attempt was made to solve problem 
(11, (3) by inroducing new characteristic variables , namely the velocity field tensor Vi,' and 
pressure field vector P,', as follows: 

ui = v'*u,, Paij = VSl~j~m~~mP~~, (A.1) 

where the translational velocity of the particle ad is an arbitrary vector. SubstitutingfA.1) 
into (If, (3) we find that the characteristic quantities (vi:, Pi) must satisfy the following 
system of equations and boundary conditions: 

vj”ij=~‘lij,“,urvj( - a,g; + v,vl; -t vrvln.) = 0 (A.21 
ViVii=O; r=a, Vij)=~..; r-00, Vij'-0 13 (A.31 
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We find, however, that the expressions given in /2/ for the characteristic quantities 

do not satisfy Eqs.(A.2). Therefore the expressions given for the coefficients of resistance 
of a spherical particle are incorrect. 

The error in /2/ is caused by the fact that instead of Eq.(A.2) theauthor used 

PP’=V.f_E’ ’ 1 * , 3 1s (A.@ 

which were obtained as follows. In order for the parr (reis, ’ p,‘i to be a solution of (A-2), it 
is sufficient for that pair to be a solution of the equation V~(-_GrmP:+V,V~s'+V,V,,')~T, or 
in expanded form, to 

i=m=l, - 61,V,P,'f V,V,I',,' -tVIVIFl; =o (A.6) 
j=m=Z, - q,v,&p, f v~v*I'~&'+ v,v,v,; = 0 
j=?na~, - 6,,v,P;+ v,v,V,s'+ vIG,V,'=@ 

j= 1, m=2, - BI,VIP,'+VrP,l'l; + V,vlv,'=' 
j= 1, m=3, - 6[*v,P,' _tV,V,V**'-t- v2qlV,; =o 

j=2, m=2, - ~,,v,P,’ + V,V,V~~J + vlv,v,; = 0 etc .I 

In /2/ the first three equations of (A.6) were combined to obtain, naturally, (A.5), and 
the remaining equations of (A.6) were neglected. The present discussion shows, however, that 
the system (A.3), (A.51 is not equivalent to the system (A-2), (A.3). 

We note that in the special case of isotropic viscosity 

'l(jrm='l t6$j~+ '$mSj[) 

the relations (A.l) become Vi = Vi,'u,, p = P,'u,q, equations (A.2) reduce to Eqs.(A.5) and the 
problem, as well as the method of solving it in /2/, become identical with the results in /4/. 
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ON THE STABILITY OF A VAPOUR-LIQUID MEDIUB CONTAINING BUBBLES* 

V.SH. SHAGAPOV 

A problem of the stability of a vapour-liquid medium containing bubbles is 
investigated. It is shown that since the surface tension and phase 
transitions act simultaneously, a range of values of the parameters of the 
vapour-liquid and vapour-gas-liquid media containing bubbles exists, for 
which the equilibrium state is unstable. The effect of various parameters 
of the two-phase medium, such as the volume content of the bubbles, the 
mass content of the gas and the degree of dispersion of the medium, on 
the increment characterizing the rate of development of the instability, 
is analysed. 

1. Fundamental equations. Let us consider the propagation of small perturbations 
through a polydisperse mixture of liquid and bubbles of m-i kinds, under the usual assump- 
tions made for two-phase media. Moreover, we shall assume that the gaseous phase consists 
of the vapour from the liquid phase, and some "inert" gas which takes no part in the process 
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